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Presentation Outline - Part I  

 
Overview of Particle Beam Optics Utilized in the  

Matrix, Envelope, and Tracking Codes:  
TRACE 3-D, Beamline Simulator (TRANSPORT & TURTLE)  

 
 

1. Basic Matrix Premise, Coordinates, Linear / Nonl inear Particle Optics, …  pp 3-13 
     

2. Describing a Beam - Phase Space, Semi-Axes & Twi ss Representations  pp 14-30 
 

⇒  Break 
      

3. Equations of Motion: Drifts, Quads, Bends - Indi vidual Particle Motion pp 31-54 
 

⇒  Break 
    

4. Introduction to the Beam Optics of TRACE 3-D pp 57-74 
   

5. Introduction to the Beam Optics of Beamline Simu lator pp 75-81 
     

6. Summary  page 82

  
 
 

 Part II ⇒ Use the PBO Lab TRACE 3-D Module to work some examp les  
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Describing Trajectories 
and Coordinate Systems

Red is used to refer to the x 
("horizontal") direction 
  
Blue is used to refer to the 
y ("vertical") direction 
 
Green is used to refer to the 
z ("longitudinal") direction

 

1. Basic Matrix Premise, Coordinates, Linear / Non- linear Particle Optics, …  
 

- Particle optics utilizes a perturbation approach to  beam dynamics 
- Motion measured with respect to Reference  (or Synchronous ) Trajectory  
- Origin  of the coordinate system moves  along the Reference  Trajectory  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 - Distance  along the Reference Trajectory is denoted here by s 
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1. Matrix Premise, Coordinates, Linear / Non-linear  Particle Optics, …(cont'd) 
 

Reference  Trajectory  can be thought of as a machine  property , often specified 
in terms of "floor coordinates" (denoted below by s ubscripts F) 
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1. Matrix Premise, Coordinates, Linear / Non-linear  Particle Optics, …(cont'd) 
 

• In addition to the "floor coordinates" the Reference  Trajectory  also has a 
"Reference Velocity" vs associated with it. 

 

•  A "Reference Particle" (not necessarily any actual  particle) moves along the 
Reference Trajectory at the Reference Velocity. 

 

• The magnitude of the Reference (or Synchronous) Vel ocity is often denoted  
vs = cβs, where  c is the speed of light and  βs is the relativistic speed.  

 

• Similarly one can define a Reference Kinetic Energy , Reference Total Energy, 
Reference  γs = (1-βs

2)-1/2, etc. 
 

• PBO Lab Global  Parameters  Set Several Initial Reference Trajectory Values 
 

• Some beam optics codes compute the floor coordinate s of the Reference 
Trajectory but many do not. 

 

TRACE 3-D (and TRANSPORT) compute Reference Kinetic  Energy 
(and/or related parameters) as well as Reference Tr ajectory length 

 

TRACE 3-D does not  compute floor coordinates 
 

TRANSPORT does compute floor coordinates 
 

• TRACE 3-D also utilizes a Reference, or Synchronous, Phase φs. 
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Describing Trajectories 
and Coordinate Systems

Red is used to refer to the x 
("horizontal") direction 
  
Blue is used to refer to the 
y ("vertical") direction 
 
Green is used to refer to the 
z ("longitudinal") direction

 

1. Matrix Premise, Coordinates, Linear / Non-linear  Particle Optics, …(cont'd)   
 

So, motion measured with respect to Reference  (or Synchronous ) Trajectory  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

⇒ Particle Optics:   describe  [xb, yb, zb] in terms of  [xa, ya, za] as function of  s 
⇒ Envelope Optics:   describe moments  of a distribution  fb(xb, yb, zb)  
 in terms of  moments  of the distribution  fa(xa, ya, za) as function of  s 
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1. Matrix Premise, Coordinates, Linear / Non-linear  Particle Optics, …(cont'd) 
 

• A map, M, can be used to compute [ xb, yb, zb] from [ xa, ya, za].  The momentum 
associated with each will coordinate also be needed , e.g. [Pxa, Pya, Pza].  

 

• If we denote the 6-vector [ xb, Pxa, yb, Pya, zb, Pza] by [ qi] with i = 1,…,6 then  M 
maps [q i a] into [q i b]:   

[q i b] = M [qi a]  
 

• Since all elements of the 6-vectors [ qi a] and [ qi b] are presumed "small" we 
should be able to represent the map M by a Taylor series expansion: 

 

M [qi a] = Σj Rij  qja + Σj≤k Σk Tijk  qjaqka + Σj≤k≤l Σk≤l Σl Uijkl  qjaqkaqla + … 
 

• In first-order optics, only the first term is used:   
[q i b] = M [qi a] = Σj Rij  qja  

  First-order optics ⇒ linear optics, described by R-matrix  
 

• In second-order optics, the first 2 terms are used:   
[q i b] = M [qi a] = Σj Rij  qja + Σj≤k Σk Tijk  qjaqka 

     Second- (and higher-)order ⇒ nonlinear optics  

 

• Less than or equal sums (e.g.  j≤k) avoid double counting (e.g.  Tijk =T ikj ). 
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1. Matrix Premise, Coordinates, Linear / Non-linear  Particle Optics, …(cont'd) 
 

Why use this matrix formalism? 
 

• Consider particle starting on-axis:   xa = 0 and  ya = 0 at Reference Velocity  [vs] 
 

• The change in the x-coordinate at the end of a syst em [xb] due small initial 
velocities  [vxa, vya] away from the axis can be written as:  

 

 xb = R12 [x' a] + R14 [y' a]   
 

 with   x'a = vxa / vs ≈ Pxa / Ps   and   y'a = vya / vs ≈ Pya / Ps 
 

• Suppose we want a lens system that will bring a gro up of such on axis 
particles back to the (x) axis.  This could be acco mplished for ALL  vxa &  vya if  

 

 R12 = R14 = 0   
 

 ⇒  "Point-to-Point" Focus in x   (R12 = 0) 
 

   Similarly for y:  R32 = R34 = 0   
 

 ⇒  "Point-to-Point" Focus in y    (R34 = 0) 
 

Will Return to this Later!  
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1. Matrix Premise, Coordinates, Linear / Non-linear  Particle Optics, …(cont'd) 
 

The "Standard" 6-D Phase Space Coordinates & Moment a 
 
 
 
 
 
 
 

 

• Transverse coordinates are position values  x and  y perpendicular to 
the Reference Trajectory:  

[qi] = [xi, ... , yi, ... , ... , ...]  
 

• Transverse "momenta" are the velocity values  vx and  vy along x and y, 
divided by the Reference Velocity vs and denoted as x' and y': 

[qi] = [xi, x'i, yi, y'i, ... , ... ]  
where    x' = vx / vs    and    y' = vy / vs  

 
 

Some codes use x' = px / ps  and y' = py / ps,  but the first-order R-  matrices 
are the same.  (Differences occur in higher order m atrices or maps.)  
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1. Matrix Premise, Coordinates, Linear / Non-linear  Particle Optics, …(cont'd) 
 

The "Standard" 6-D Phase Space Coordinates & Moment a 
 
 
 
 
 
 
 
 
 

 

• Longitudinal coordinate is the difference between t he path length  
projected onto the Reference Trajectory & the Reference Path Length:  

 [qi] = [xi, x'i, yi, y'i, l i, ... ]  
 

• Longitudinal "momentum" is the momentum deviation f rom the 
Reference Momentum, divided by the Reference Moment um:  

 [qi] = [xi, x'i, yi, y'i, l i, δi]  
 

where    δi = (pi - ps) / ps  
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1. Matrix Premise, Coordinates, Linear / Non-linear  Particle Optics, …(cont'd) 
 

● Useful to break  (6 × 6) R-Matrix into a set of 9 (2-by-2) submatrices:  

 
 

 
 
 
 
 
● For a many cases (drifts, quads, solenoids) only th ree are non-zero:  

 
 

 
 
 

 
● This leads to a "block diagonal" R-Matrix:  

 
 
                                                 R =  
 
 
● Bending magnets represent an exception to "block di agonal" R-Matrix 

       Bends introduce dispersion: coupling between  bend (x) and z,z' planes 

R    = xx 

R     R 11     12 

 R     R  21     22 

R    = yy 

R     R 33     34 

 R     R  43     44 

R    = zz 

R     R 55     56 

 R     R  65     66 

Rxx             0                0 
 0              Ryy              0 
 0               0               Rzz 
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1. Matrix Premise, Coordinates, Linear / Non-linear  Particle Optics, …(cont'd) 
 

Some other matrix properties 
 

• R11 describes the dependence of the output   xb on the input  xa : 
 

 R11 = Mx = x-Magnification  (|R11|>1) or Demagnification  (|R11|<1) 
 

   Similarly: 
 R33 = My = y-Magnification  (|R33|>1) or Demagnification  (|R33|<1) 
 

• R21 describes the dependence of the output angle  x'b on the input  xa : 
 

 R21 = - 1 / fx    where    fx = x-Focal Length  
 

   Similarly: 
 R43 = - 1 / fy    where    fy = y-Focal Length  
 

⇒ R21 < 0 then focusing in x direction, while R21 > 0 is defocusing in x direction     
⇒ R43 < 0 then focusing in y direction, while R43 > 0 is defocusing in y direction     
 

• For Solenoid or  Einzel Lens , x and y are same  (R21 = R43)  ⇒   stigmatic lens  
 

• For a Quadrupole , x and y are not the same  (R21 ≠ R43)  ⇒   astigmatic lens  
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1. Matrix Premise, Coordinates, Linear / Non-linear  Particle Optics, …(cont'd) 
 

Not All Optics Codes Use the "Standard" Coordinates  & Momenta 
⇒ Comparing Results Between Different Codes Can Be Ch allenging! 

 

• Example of transverse momenta differences already n oted (e.g. x' = px / ps) 
 

• Some codes use a time-variable rather than Referenc e Trajectory length s  
 

• Some codes use a time-of-flight variable rather tha n path length projection l 
 

• Other differences from "Standard"  [ qi] = [xi, x'i, yi, y'i, l i, δi] exist  
 

• Differences mean care must be taken in comparing ma ps or matrix elements  
 

• Despite differences in [ qi] definition:  
 Most transverse first-order matrix (e.g. R-Matrix) elements are same 
 Longitudinal first-order matrix elements are most likely different  
 

• Physics is the same, but the differences also mean higher-order distinctions  
 2nd-order (e.g. T-Matrix) in one code not exactly 2nd-order in another 
 
 

⇒ PBO Lab has useful tools for matrix & map compariso ns between codes 
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2. Describing a Beam - Phase Space, Semi-Axes & Twi ss Representations 
 
 
 

Beam is a Collection ("Ensemble") of Particles  

 
 

 ⇒   Can Certainly Apply Single Particle Equations  of Motion to All Particles  
  -  Some Optics Codes do this (e.g. Beamline Simul ator, TURTLE) 
  -  For Design & Other Studies Really Want: 
 Computation Methods for Beam  Properties  
 Faster Computation than Tracking Particles  
 
 

We want a method for 
Describing a Beam 

and procedures for simulating 
the evolution of that description 

 
⇒  Phase Space Descriptions of Beam Distributions
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2. Describing a Beam - Phase Space, Semi-Axes & Twi ss Rep. …(cont'd) 
 
 
 

 ●  TRACE 3-D is a "1 st Order" "Matrix" Code - What Does It Calculate? 
 

Does It Calculate  [qi b] = M [qi a] = Σj Rij  qja  ? 
     No ⇒ TRACE 3-D Does Not  Advance Individual Particles  
 

 ●  TRACE 3-D Advances the Beam Distribution's 1st & 2n d Moments 
  -  Beam Described by 1st & 2nd Moments of the Par ticle Distribution 
  -  1st Moments of the Particle Distribution are B eam Centroids 
  -  2nd Moments of the Particle Distribution are a  Matrix ( σ Matrix) 
 

 ●  Let a Beam Be Described by a  
Distribution Function f: 

 

f = f(x,x',y,y',z,z') 
 

  with normalization:  
 

∫ f(x,x',y,y',z,z') dxdx'dydy'dzdz'  = 1 
 

 

 

 

●  The Distribution Function f gives the Particle Density in Phase Space 
 

●  The  Longitudinal Variables ( z,z') Are Understood to Mean ( l,δ)  
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2. Describing a Beam - Phase Space, Semi-Axes & Twi ss Rep. …(cont'd) 
 
 
 

 ●  First Moment for <x> of the Distribution Function f: 
 

<x> = ∫ x f(x,x',y,y',z,z') dxdx'dydy'dzdz' 
 

 ●  Similar Definitions for <x'>, <y>, <y'>, < l >, < δ > 
 

 ●  The Beam Centroid  Vector  [q i]c is Given by 1 st Moments: 
 

    [q i]c ≡ (xc, x'c, yc, y'c, l  c, δ c) =  (<x>, <x'>, <y>, <y'>, < l >, < δ >) 
 

 ●  If the Beam Centroid Follows the Reference Trajectory  Then 
 

 [q i]c ≡ (xc, x'c, yc, y'c, l  c, δ c) = 0  
 
 

 ●  Reference Trajectory = Optical Component "Central"  Axis 
   ⇒ Fields are Expanded About that Central Axis  
 

 ●  Beam Centroid = Beam Location with Respect to that Central Axis 
   ⇒ Beam 2 nd Moments Computed with Respect to Beam Centroid  
 

 [•  Some Works Use "Centroid" & "Reference" Trajectory Interchangeably ] 
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2. Describing a Beam - Phase Space, Semi-Axes & Twi ss Rep. …(cont'd) 
 

 

●  Second Moments Defined by Quadratic Forms of Variab les: 
 

      <x2> = ∫ (x)2 f(x,x',y,y',z,z') dxdx'dydy'dzdz' 
 

  where we assume that centroid has been removed ( <x2> ≡ <(x- xc)
2>) 

 

●  Again, Similar Definitions for <xx'>, <xy>, <xy'>, <xl>, <xδ>, … 
 

●  Second Moments Can Be Written as a 6-by-6 Matrix, t he σ Matrix: 
 
 

 
 
 
 
 
●  The σ Matrix, aka "Beam Matrix", is Symmetric (e.g. <xx'> = <x'x>) 

 

 ●  If Particle Coordinates Transform as  [qi b] = Σj Rij  qja ≡ R[qi a] 
 It Can Be Shown that the Sigma Matrix [σij  b] Transforms as: 

 

 [σij  b] = Σk Rik Σm Rmj [σkm a] ≡ R[σij  a]R
T 

 

where RT is the Transpose of R. 
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 2. Describing a Beam - Phase Space, Semi-Axes & Tw iss Rep. …(cont'd)  
 

 

●  The σ Matrix is Symmetric ⇒ Use a "Reduced" Representation 
 

● Define Correlation Parameters by: 
 

   r12 ≡ rxx' = <xx'> / (<xx><x'x'>)1/2 = σxx' / (σxx σx'x')
1/2 

 

   r13 ≡ rxy   = <xy> / (<xx> <yy'>)1/2 = σxy  / (σyy σxy)
1/2 

 

   etc. for the complete set of rij for 1 ≤ i,j ≤ 6  
 

● From  σ-matrix properties:  rij ≡ rji and rii ≡ 1 all unitless  
 

● Can Write the "Reduced" σ-Matrix as a Lower Half-Matrix:  

 
● The First Column Contains the RMS Beam Envelopes  ("Sizes")  

  -  PBO Lab Beam Piece gives UNITS Immediately Aft er 1st Column 
 

● There Are 15 Correlation Coefficients ( rij with i<j, and j running from 1 to 5) 

σ        =

 <x   >  
<x'  >     r  
 <y   >     r       r  
<y'  >     r      r       r  
 <z   >     r       r       r       r 
<z'  >     r       r       r       r       r    

reduced

2

2

2

2

2

2

21

31

41

51

61 65

32

42

52

62

43

53

63

54

64

1/2

1/2

1/2

1/2

1/2

1/2
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2. Describing a Beam - Phase Space, Semi-Axes & Twi ss Rep. …(cont'd) 
 

 

●  Similar to the R-Matrix, the Sigma-Matrix is Often "Block Diagonal" 
 
 

●  Can Then Write the σ-Matrix as the Three (non-zero) Submatrices: 
 
 
                                                 σ =  
 
 
 
 

●  Where Each Submatrix is a 2 ×2 Matrix: 
 
 

 
 
 
 
 

●  Symmetry of σ-Matrix (e.g. σ21 = σ12) Means 3 Independent Parameters 
for Each 2 ×2 Matrix.  So, if it Proves Useful , Can Write Each in Form 
such as: 

 
 

 with βxγx - αx
2 = 1  

 
 
 

σ xx             0                0 
 0              σ yy              0 
 0               0               σ zz 

σ    =  xx 

 σ     σ 11     12 

  σ     σ  21     22 
σ    =  yy 

 σ     σ     
σ σ 

33     34 

  σ     σ  43     44 
σ    =  zz 

 σ     σ 55     56 

  σ     σ  65     66 

σ    = ε xx       x 
 β    -α x       x 

 -α     γ   x      x 
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x
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2. Describing a Beam - Phase Space, Semi-Axes & Twi ss Rep. …(cont'd)  
 

 

●  Motion of a particle moving under linear restoring force ( harmonic 
oscillator ) can be described in terms of amplitude and phase  variables by: 

 

 x(s) = [βx εx]1/2 cos(ψx(s) + ψx(0))  
 

 where βx is constant and  ψx(s) is linear in  s: 
 

 βx = x(0)2 / εx         ψx(s) = kxs        (think of s as t or z) 
 
 

●  βx is the amplitude  and ψx(s) is the phase 
 
 

●  As s increases the particle traces an ellipse  
 in Phase Space  Phase Space  
 
 

●  If the force "constant" kx is not  a constant, but changes with s, e.g. kx(s), the 
motion can still be described in terms of amplitude  and phase:  

 

            x(s) = [βx(s) εx]1/2 cos(ψx(s) + ψx(0))  
 
 

●  Now βx(s) is not constant and is ψx(s) nonlinear: 

       dβx(s)/ds = -2αx(s)        ψx(s) = ∫[βx(s)] -1 ds  
 



KACST, Riyadh, Saudia Arabia Overview of Particle Beam Optics  October 2014 

KCAST October 2014 Overview of Particle Beam Optics - 21 G. H. Gillespie Associates, Inc. 

  

2. Describing a Beam - Phase Space, Semi-Axes & Twi ss Rep. …(cont'd)  
 

 

●  The function βx(s) is referred to as the amplitude function  
 
 

●  The function ψx(s) is referred to as the phase advance  
 
●  As s increases the particle will still remain on the ellipse , but now the ellipse 

will change  in phase space  
  
 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

●  If you start with an collection of particles ("beam ") with a set of initial 
amplitudes and phases inside of a given ellipse  the ellipse will evolve 
("down the beamline") and all particles will remain within that ellipse . 

  
 ⇒  Representation Provides a Useful Way to Describe a Beam  

 (at least for linear optics)  

x

x ' x '

x
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2. Describing a Beam - Phase Space, Semi-Axes & Twi ss Rep. …(cont'd) 
Relation Between σ-Matrix (Semi-Axis) Parameters and α-β (Twiss) Parameters  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

βxεx ≡ σ11 = <x2> = (xmax)2  
 

γxεx ≡ σ22 = <x'2> = (x'max)2  
 

αxεx ≡ σ12 = <xx'> = r12 [σ11σ22]
1/2         or αx = -1 / [1- r12

2] 1/2  
r12 ≡ σ12/[σ11σ22]

1/2 = r21 ≡ σ21/[σ11σ22]
1/2 
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x 

x'  

x 

x'  

  

2. Describing a Beam - Phase Space, Semi-Axes & Twi ss Rep. …(cont'd) 
 
 

 Twiss Representation Geometric Parameterization 
 
 

  x'm = [γx εx]
1/2 

  x'j = [εx /βx]
1/2 

 

x'e = -αx[εx /βx]
1/2 Ax 

 

 Bx 
 Θx 
 
 
 

  xm = [βx εx]
1/2 

 

  xj = [εx /γx]
1/2 

 

  xe = -αx[εx /γx]
1/2 

 
 

γx /εx = (cosΘx / Ax)
2 + (sinΘx / Bx)

2  
 

βx /εx = (sinΘx / Ax)
2 + (cosΘx / Bx)

2 
 

αx /εx = cosΘx sinΘx  [(1 / Bx)
2 - (1 / Ax)

2] 
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2. Describing a Beam - Phase Space, Semi-Axes & Twi ss Rep. …(cont'd) 
Note:  Can Transform Ellipse into a Circle ⇒ Beam Comparisons  (TRACE 3-D)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
βxεx = (ax)2 

 

tanχx = (tanψx - αx) / βx 
 

alternatively:  cosψx = cosχx / [(cosχx)2 + (αx cosχx - βx sinχx)2]1/2 
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2. Describing a Beam - Phase Space, Semi-Axes & Twi ss Rep. …(cont'd)  
 

●  The parameters αx, βx and γx are often called "Twiss Parameters" 
  

 ⇒ I (try to) use the term Twiss Parameters when describing beam properties  

 
 

●  The αx, βx and γx are also called the "Courant-Snyder Parameters" 
  

 ⇒ I use Courant-Snyder Parameters when describing machine properties  

 
 

●  For a periodic (stable) system, the functions αx(s) and  βx(s) will be periodic  

 
 
 

 
 
 
 
 
 

Example of βx(s) and βy(s) for a storage ring 
 

●  The only beam that will survive many passes through  such a system 
 (i.e. many turns around the ring) is called the "m atched beam"  

⇒ The "matched beam" requirements are machine properties  
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2. Describing a Beam - Phase Space, Semi-Axes & Twi ss Rep. …(cont'd)  
 

●  Two slits will define an "acceptance" phase space f or a beam  
 

●  Slit-defined "acceptance" phase space also specifie s an enclosing ellipse   
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Phase space accepted by two slits,  Phase space accepted by three slits, 
 each of width W, separated by L.  with focusing elements in between. 

[Figures from page 101 of The Optics of Charged Particle Beams by David C. Carey, Harwood Academic Publishers (1987).] 
 
 

●  An inscribed "acceptance" ellipse can be used to de scribe accepted beam  
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2. Describing a Beam - Phase Space, Semi-Axes & Twi ss Rep. …(cont'd)  
 

Emittances:  RMS, Boundary, Normalized, Unnormalized, … 
 

⇒  The value of εx, which is a measure of the ellipse area, is the x-emittance . 
 

One convention  defines εx as the area of the ellipse divided by π, and written as  
  εx = [ <x2> <x'2> - <x'x >2] 1/2 = 0.1 π-mm-mrad  (π in the units ) 
 

●  Emittance Definitions & Usage are Not Uniform    
 

●  Laboratory Emittance  = "unnormalized" emittance (a ssumption so far)   
 

●  Emittance ellipse may describe all, or only a part,  of the beam   
 
 
 
 
 
 
 
 
Enclosing Ellipse: Partially Enclosing Ellipse: 
"boundary" emittance "RMS" emittance, "50% contour"  emittance, ... 
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2. Describing a Beam - Phase Space, Semi-Axes & Twi ss Rep. …(cont'd)  
 

 

Emittances:  RMS, Boundary, Normalized, Unnormalized, … 
 
 

  εx = [ <x2> <x'2> - <x'x >2]1/2    π-mm-mrad  (π in the units ) 
 
 

●  Laboratory emittance  (i.e. "unnormalized") not  preserved with acceleration 
 

εx(Eb) = εx(Ea) [βaγa] / [βbγb]  

⇒ These βaγa and βbγb are relativistic velocity and energy parameters, not Twiss !  

 
 

●  Normalized emittance , εx,n, is  preserved with acceleration  
 
 

εx,n = [βaγa] εx(Ea)  

 
 

●  Laboratory emittance scales with square root of kinetic energy  Ea → Eb 
 
 

εx(Eb) = εx(Ea) [βaγa] / [βbγb] ≈ εx(Ea) [va/vb] ≈ εx(Ea) [Ea / Eb]
1/2

 

 
 

●  Reported emittance may also need to be scaled with mass ma → mb 
 
 

εx(mb) = εx(ma) [βaγa] / [βbγb] ≈ εx(ma) [Ea / Eb]
1/2 [mb / ma]

1/2
 

  

 [Often emittances from ion source are different fo r different mass particles.] 
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2. Describing a Beam - Phase Space, Semi-Axes & Twi ss Rep. …(cont'd)  
 

Emittances:  RMS, Boundary, Normalized, Unnormalized, … 
 
 

●  Example:  KACST ion injector design acceptance:  
 

●   Acceptance εacceptance of beamline for 30 kV extraction is:  
 

     εacceptance = 120 π-mm-mrad 
[from Table 1 of "A Versatile Ion Injector at KACST," M. O. A. El Ghazaly, S. A. Behery, A. A. Almuqhim. A. I. Papish and C. P. Welsch, 

AIP Conference Proceedings 1370, 272-277 (2011).] 
 

●  Normalized or Un-Normalized?   If We ("I") Assume Normalized by βγ:   
 

●  Extraction energy will be  Ea = 30×q keV where q is the charge state of the ion   
 

●  The β,γ values for a ( 30 keV) proton ( q = 1) are βa= 0.007997 and  γa= 1.000032  
 

●  The equivalent laboratory emittance to use in calcu lations is thus: 
 

 εlab(30 keV H+) = εacceptance / (βaγa) = 120 π-mm-mrad / 0.007997 = 15005. π-mm-mrad 
 

●  For 30 kV charge 2 ( q = 2) heavy ( 1500 amu) ion the emittance for calculations: 
 

 εlab(60 keV 1500 amu) = 15005 π-mm-mrad [(30.0/60.0)1/2(1500/1.007276)1/2]  
= 15005×(0.7071×38.59) π-mm-mrad = 409442 π-mm-mrad 

 

 [Using βb= 0.000293 and  γb= 1.000000 the direct calculation gives same result: 
εlab(60 keV 1500 amu) = εacceptance / (βbγb) 

 = 120/0.000293 π-mm-mrad = 409556 π-mm-mrad]  

⇒ These laboratory emittances seem "large"  ⇒ Assumption probably wrong.  
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2. Describing a Beam - Phase Space, Semi-Axes & Twi ss Rep. …(cont'd)  
 
 

●  Virtually All Optics Codes (including TRACE 3-D) Us e Laboratory Emittance  
 

●  TRACE 3-D Uses an "Equivalent Uniform Beam" Model o f A Beam   
 
 
 
 
 
 
 
 
 Enclosing Ellipse Gives For a  Bunched (3-D) Beam 
 Boundary "bnd" Emittance ≡ bnd Emittance = 5 × RMS Emittance 

 
 

 Enclosing Ellipse Gives For Continuous (2-D or DC) Beam 
bnd Emittance = 4 × RMS Emittance 

 
 

●  PBO Lab Uses the TRACE 3-D Bunched Beam Convention:   εbnd = 5εrms     
 

●  Beam "Sizes"  (5) 1/2 × RMS Sizes:  <x2> = (xmax)2  where xmax = (2.2360...) × xrms       
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 3.  Equations of Motion: Drifts, Quads, Bends 
 
 
 
 

But how do we get from 
 F = ma  

to the matrix formalism? 
 
 
 
 
 
 ⇒  Equations of Motion
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 3.  Equations of Motion: Drifts, Quads, Bends 
 
 
 

● Classical mechanics, 
Newton's 2nd Law: 
 

 F = dp/dt      (F, p 3-vectors) 
 

● Relativistically correct, with 
proper interpretation of F and p 
(need a 4-vector) 
 

- Spatial components: 
  Fx = dpx/dt   with px = βxγmc 
  Fy = dpy/dt   with py = βyγmc 
  Fz = dpz/dt    with pz = βzγmc 
 

- 4th component (energy W): 
 

F • v = dW/dt    with W2 = p2c2 + m2c4 
 

● More elegant formulation 
uses Hamiltonian mechanics (not 
discussed further here) 

Equations of Motion  
F = ma Version  

   
This section of the lecture uses:  

 
Bold Font for 3-Vectors 

Plain Font for Scalars 
  

 
The z coordinate is often denoted by l 

l = path length difference
 

 

x

y

z

v

y

z x

r
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3.  Equations of Motion: Drifts, Quads, Bends …(con t'd) 
 

Equations of Motion  (con't)  
 

● For cases where the Reference Trajectory is straigh t, and there is 
 no acceleration (i.e. all magnetic elements except  bends), the equations  

of motion in TRACE 3-D coordinates can be derived u sing the relation: 
 

       d /dt = (ds/dt) d /ds ≡ cβs d /ds,      e.g. vx ≡ dx/dt = cβsdx/ds ≡ cβsx' 
 

● Transverse motion ( x and y): 
 

       Fx = dpx/dt = cβs d (βxγmc) /ds = cβs d (x'βsγmc) /ds = cβs
2 γmc dx'/ds  

       Fy = dpy/dt = cβs d (βyγmc) /ds = cβs d (y'βsγmc) /ds = cβs
2 γmc dy'/ds  

                      where:   x' = dx/ds,     y' = dy/ds  
 

● Convenient to write these in the form: 
 

                 dx /ds = x'   dx'/ds = [Fx / ps] 1/(cβs) (γs/γ) 
                 dy /ds = y'   dy'/ds = [Fy / ps] 1/(cβs) (γs/γ) 
                  
● Use the Lorentz force to get the forces Fx , Fy for particular fields 
 

 For a force free region (e.g. drift space) Fx = Fy = 0, hence dx'/ds = dy'/ds = 0 
   So that dx /ds = x' = constantx, and dy /ds = y' = constanty 
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 3.  Equations of Motion: Drifts, Quads, Bends …(co nt'd) 
 
 
 

 Equations of Motion  (con't)  
 

● Longitudinal motion in TRACE 3-D coordinates ( l and δ), when 
 the Reference Trajectory is straight and there is no acceleration 
 (i.e. all magnetic elements except bends), is simp le but non-trivial 
 

● For magnetic fields, where F = q (v Χ B) , then F • v = 0, and dW/dt = 0 
 

     dW/dt = cβs dW/ds = cβs d(γmc2)/ds = mc3βs dγ/ds = 0 

 

             If  dγ/ds = 0 ,  then   dβ/ds = 0  also,   and likewise  d(βγ)/ds = 0   

 

● So with no acceleration, then for the Reference Tra jectory variables 
 

                              d(βsγs)/ds = 0   

         and since  δ = [(βγ)/(βsγs)] - 1   one then has:  
 

                                  dδ /ds = 0  (⇒ Conservation of Energy, Bends too) 
 

● More general case (e.g. with acceleration) one can show that 

● What about the longitudinal coordinate l ?

v  z

v  xdδ 
dz  s

1 
(1+δ)

β γ  z

β γ  s s

1 
cβ pss

d(      ) 
dz  s

β γ  s s(1+δ)
β γ  s s

v  z

v  y
z x y=                        [F + (   ) F  + (   ) F ] - 
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 3.  Equations of Motion: Drifts, Quads, Bends …(co nt'd) 
 
 
 

Equations of Motion  (con't) 
 
 

● l is the projected (on z direction) path length difference  
 

   dl /dt = cβs dl /ds ,   but   dl /dt = vz - vs = c(βz-βs),   hence    

 

                        dl /ds  = (βz/βs) - 1  

 

● Longitudinal velocity βz (not  conserved ) in terms of other variables ( x', y', δ) 
 

   βz = { (β)2 - (βx)
2 - (βy)

2} 1/2 = { (β)2 - (x'βs)
2 - (y'βs)

2} 1/2 

  it can be shown that    β = βs (1 + δ) / [1 + δ(2+δ)(βs)
 2]  1/2  ,   hence 

 

             βz = βs {( (1 + δ)2 / [1 + δ(2+δ)(βs)
2]) - (x')2 - (y')2} 1/2  ,  so finally: 

 

   dl /ds  = {( (1 + δ)2 / [1 + δ(2+δ)(βs)
2]) - x'2 - y'2} 1/2  - 1  

 

● Note that dl' /ds ≠ 0 , where  l' = dl /ds, but has an "apparent" "force" Fl : 
 

Fl   = (d/ds){( (1 + δ)2 / [1 + δ(2+δ)(βs)
2]) - x'2 - y'2} 1/2 

 

 

● Longitudinal coordinate l important for radiofrequency (RF) components 
 

[• Not all codes use the (TRACE 3-D, TRANSPORT) longit udinal coordinate l ]
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 3.  Equations of Motion: Drifts, Quads, Bends …(co nt'd) 
Equations of Motion - Drift   

 

For (non dipole) magnetic systems without accelerat ion, the equations of 
motion in TRACE 3-D variables x, x', y, y', l, δ are: 
 

  dx /ds = x'                                dx'/ds = [Fx / ps] 1/(cβs) (1/{ 1 + δ(2+δ)(βs)
2} 1/2) 

  dy /ds = y'                                dy'/ds = [Fy / ps] 1/(cβs)  (1/{ 1 + δ(2+δ)(βs)
2} 1/2) 

  dl /ds = {( (1 + δ)2 / [1 + δ(2+δ)(βs)
2]) - x'2 - y'2} 1/2  - 1                      dδ /ds = 0 

 

Return to the simplest example: Drift (field free r egion): 
 

  dx /ds = x'                                dx'/ds = 0 
  dy /ds = y'                                dy'/ds = 0 

  dl /ds = {( (1 + δ)2 / [1 + δ(2+δ)(βs)
2]) - x'2 - y'2} 1/2  - 1                      dδ /ds = 0 

 

Integrate ds from sa to sb, with sb-sa = L, the length of the drift, the solutions are: 
             xb = xa + x'a L                              x'b = x'a 
 

             yb = ya + y'a L                              y'b = y'a 

      lb  = la + {( (1 + δo)
2 / [1 + δo (2+δo)(βs)

2]) - x'a
2 - y'a

2} 1/2 L - L   δ b  = δa ≡ δo 
 

⇒  Drift is inherently nonlinear for the longitudinal  coordinate 
lb ≅ la  +   (δo/γs

2) L + O(δo
2, x'a

 2, y'a
 2)  +  higher order terms 

[• Although codes may not use the (TRACE 3-D, TRANSPOR T) longitudinal 

coordinate l, their equivalent  longitudinal coordinates are still nonlinear ]
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 3.  Equations of Motion: Drifts, Quads, Bends …(co nt'd) 
 

 
 

Equations of Motion - Drift   (con't)  
 

● Solution for Drift is in the form of matrix equatio n, taking an initial vector 
 [q i a] =(xo, x'o, yo, y'o, l  o, δ o) to a final vector [q i b] =(x, x', y, y', l, δ), where the  

 R-Matrix equation,  qi b = [R] qi a, is obtained using only l=(δo/γs
2) L+ lo. 

 

● Useful to break  (6-by-6) R-Matrix into a set of 9 (2-by-2) submatrices:  

 

● For a drift, most submatrices are zero, only three are non-zero:  

 

● For a drift of length L, then the  R-Matrix above is evaluated for s = L 
 

● Easy to show that, for two drifts of lengths L1 and L2, the multiplication  
 of the two  R-Matrices is simply a R-Matrix for length L = L1 + L2 

= R             =                                                    =  

x 
x'  
y 
y'  
l 
 δ 

[ R   ]  [ R   ]  [ R   ] 
xzxx xy

[ R   ]  [ R   ]  [ R   ] 
zzzx zy

[ R   ]  [ R   ]  [ R   ] yzyx yy

x 
x'  
o  
o  

y 
y'  
o  
o  
o  
o  

l 
 δ 

x 
x'  
o  
o  

y 
y'  
o  
o  
o  
o  

l 
 δ 

x 
x'  
o  
o  

y 
y'  
o  
o  
o  
o  

l 
 δ 

R    R    R    R    R    R 51     52     53     54     55     56

21     22     23     24     25     26
R    R    R    R    R    R 
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 3.  Equations of Motion: Drifts, Quads, Bends …(co nt'd) 
 

 
 

R-Matrix Example - Drift  
 

 
● 250 keV protons ( β = 0.023080 and  γ = 1.000266 ) 
 

● Drift Length of 2 Meter  
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Dipole Quadrupole Sextupole

Multipole Magnets Formed from North and South Pole Tips 
Arranged Symmetrically Around the Beam Axis (z, out of the screen)
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 3.  Equations of Motion: Drifts, Quads, Bends …(co nt'd) 
 

 

Equations of Motion - Magnetic Quadrupole  
 
●  Magnetic quadrupole is one example of magnetic cyli ndrical multipole field  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
●  Magnetic Quadrupole Field:  inside:   B = (Bo/a) [(r sinθ) x + (r cosθ) y]    (0<z<L) 
    (in absence of fringe fields) outside:   B = 0 (z<0 or z>L) 
 

●  Lorentz Force Gives Fx and Fy:  F = (q) [E + v × B] = (q) v × B 
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 3.  Equations of Motion: Drifts, Quads, Bends …(co nt'd) 
 

 

Equations of Motion - Magnetic Quadrupole   (con't)  
 

 
Key Parameters 
  
    For Optics: 
Pole Tip Field, Bo 
 

Bore Radius, a (=r1)  
 

Effective Length, L  
 
 

 For Engineering: 
 

No. of Turns/Coil, n  
 

Current in Coil, I 
 

Typical Design of an Electromagnetic Quadrupole 
Showing Key Parameters Defining the Pole-Tip  

Geometry and Field Coils.

W

r pt
H

r1

2r

t

δ

N

N

S

S

aw

pole

yoke

coil coil

yoke 

pole 
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∫ H •ds  = nI
H •ds  = I(1) + I(2) + I(3) + I(4)∫

I(1) = ∫H  dr  = ∫(B  /µ  ) (r/r )dr = B r  /(2µ  )   o  1
0 

r 1

pt 1 oo      o
0 

r 1

I(2) = ∫H    •dr  = (1/µ     )∫B    •dr pole pole pole 

rint

r1

rint

r1

I(3) = (r   )∫H     •dΘ   = (1/µ     )(r   )∫B     •dΘ yoke

 π /4 

 0
int int yoke yoke

 π /4 

 0

I(4) =  ∫H •dr   =  0
0

rint

 3.  Equations of Motion: Drifts, Quads, Bends …(co nt'd) 
 

Equations of Motion - Magnetic Quadrupole   (con't)  
 
 

To Relate Engineering & Optics Parameters:  Use Ampere's Law 
 
 

Separate Integral into Four Parts      
 
 
 
 

I(1) Main Contribution from Bore Radial Integral    
 

  
 
 
 

I(2)+ I(3) Contributions of Pole and Yoke Small ( µ >>1) 
 

  
  

 
 

 
 

I(4) Contribution Vanishes (H | dr)  Integration Path  
 
 ⇒  Bo = 2µo nI /r1

H

r1

W

pole

yoke

coil

yoke 

pole 
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 3.  Equations of Motion: Drifts, Quads, Bends …(co nt'd) 
 

Equations of Motion - Magnetic Quadrupole   (con't)  
 

 
 

● Magnetic Field: B = (Bo/a) [(r sinθ) x + (r cosθ) y] = (Bo/a) [(y) x + (x) y], or  
 

       Bx = (Bo/a) y = B' y       By = (Bo/a) x = B' x  
 
 

● Force Components:    Fx = - (qc) βzBy   and     Fy = (qc) βzBx  ,   or  
 

                     Fx = - (qcB') βzx              Fy = (qcB') βzy 
 
 

● Equations of Motion 
 

  dx /ds = x'           dx'/ds = - [(qc) βzB'/ps] 1/(cβs) (γs/γ) x = - [qB'/ps](βz/βs)(γs/γ) x 
 

  dy /ds = y'           dy'/ds = + [(qc) βzB'/ps] 1/(cβs) (γs/γ) y = + [qB'/ps](βz/βs)(γs/γ) y 
 

  dl /ds = (βz/βs)-1      dδ /ds = 0      (longitudinal same as a drift) 
 
 
 

● Expand non-linear terms (βz/βs) ≅ 1 + (δo/γs2) + ...  , (βz/βs)(γs/γ) ≅ 1 - δo + ... 
 

  dx /ds = x'               dx'/ds = - [qB'/ps] x = - [K1] x K1 is Quad Coefficient: 
 

  dy /ds = y'               dy'/ds = + [qB'/ps] y = + [K1] x K1 = [qB'/ps] = (q/ps) [Bo/ a] 
 

  dl /ds = δo/γs2          dδ /ds = 0      (longitudinal same as a drift) 
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 3.  Equations of Motion: Drifts, Quads, Bends …(co nt'd) 
 

Equations of Motion - Magnetic Quadrupole   (con't)  
 

 

● Transverse motion  
 

  dx /ds = x'           dx'/ds = dx2 /ds2 = - [K1] x      or     dx2 /ds2 + [K1] x = 0 
 

  dy /ds = y'           dy'/ds = dy2 /ds2 = + [K1] x      or     dy2 /ds2  - [K1] y = 0 
 

 

● First order:  simple harmonic type motion, solutions depend upon  
 the sign of K1.  Useful to define k = |K1|1/2, then for K1 > 0:  

 
 

   x = xocos(ks) + x'osin(ks)/k         x' = - kxosin(ks) + x'ocos(ks) 
 

   y = yocosh(ks) + y'osinh(ks)/k     y' = + kyosinh(ks) + y'ocosh(ks) 
 

 K1 > 0 is an "x-focusing" quad, and x is typically taken to be horizontal direction 
 

● For K1 < 0, the trigonometric and hyperbolic functions are exchanged: 
 
 

   x = xocosh(ks) + x'osinh(ks)/k     x' = + kxosinh(ks) + x'ocosh(ks) 
 

   y = yocos(ks) + y'osin(ks)/k         y' = - kyosin(ks) + y'ocos(ks) 
 

 

● One phase plane is focusing (trigonometric functions) and one phase 
 plane is defocusing (hyberbolic functions)  
 

   ⇒   Need at least 2 quads for focusing in both transverse directions
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R    = xx

 cos(ks)   sin(ks)/k

-k sin(ks)   cos(ks)
R    = zz

1  s/γ

0    1
s
2 cosh(ks)   sinh(ks)/k

 k sinh(ks)   cosh(ks)yyR    = 

R    = zz
1    0

0    1
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 3.  Equations of Motion: Drifts, Quads, Bends …(co nt'd) 
 

Equations of Motion - Magnetic Quadrupole   (con't)  
 

 

● The Result is a Block Diagonal R-Matrix:  

 
 
                                                 R =  
 
  
 

● For an x-focusing (K1 > 0) quad, the three non-zero submatrices are: 
 

 
 
 

 
 
● For a quad of length L, then the R-Matrix above is evaluated for s = L 
 
 

● A useful case is where kL << 0, but k2L is not "small", then  R-Matrix is: 
 
    
 

 
 
 ⇒   Thin Lens approximation with focal lengths fx = 1/(k2L) and fy = -1/(k2L)

Rxx             0                0 
 0              Ryy              0 
 0               0               Rzz 
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3.  Equations of Motion: Drifts, Quads, Bends …(con t'd) 
 

R-Matrix Example - Quadrupole 1: QL-100  
 
 

● 250 keV protons ( β = 0.023080 and  γ = 1.000266 ) 
 

● Length L of 6 cm, Aperture a of 1.7 cm, Pole Tip Field Bo of 0.034120 T 
(Gradient B' = 20.0706 T/m, Quadrupole Coefficient K1 = 277.78 m-2, k = 16.667 m-1) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 ⇒   Thin Lens approximation gives focal lengths fx = - fy = 0.06 m 
 ⇒   Thick Lens focal lengths fx = -1/R21 = 0.0713 m and   fy = -1/R43 =  - 0.0511 m 



KACST, Riyadh, Saudia Arabia Overview of Particle Beam Optics  October 2014 

KCAST October 2014 Overview of Particle Beam Optics - 46 G. H. Gillespie Associates, Inc. 

3.  Equations of Motion: Drifts, Quads, Bends …(con t'd) 
 

R-Matrix Example - Quadrupole 2: QL-100  
 
 

● 10 keV Phosphorous ( β = 0.000833 and  γ = 1.000000 ) 
 

● Length L of 6 cm, Aperture a of 1.7 cm, Pole Tip Field Bo of 0.037840 T 
(Gradient B' = 22.2588 T/m, Quadrupole Coefficient K1 = 277.79 m-2, k = 16.667 m-1) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 ⇒   Thin Lens approximation gives focal lengths fx = - fy = 0.06 m 
 ⇒   Thick Lens focal lengths fx = -1/R21 = 0.0713 m and   fy = -1/R43 = - 0.0511 m 
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3.  Equations of Motion: Drifts, Quads, Bends …(con t'd) 
 
 

Some ElectroMagnetic Quadrupole (EMQ) Formulas 
 

 

 ●  Pole Tip Magnetic Field 
Bo = 2µo nI /r1 

Bo(T) = 8π ×10-7 [nI(Amps)]/[r1(m)] 
 
 

 ●  Quadrupole Gradient 
B ' = Bo /r1 = 2µo nI /(r1)2  

B '(T/m) = 8π ×10-7 [nI(Amps)]/[r1(m)]2  
 
 

 ●  Quadrupole Strength 
κ ≡ K1 = B ' /[Bρ]   

κ(m-2) = 0.299792[B '(T/m)]/[p(GeV)]  
 
 

 ●  Effective Length 
 

   L = [B '(0)]-1 ∫B '(z) dz  ~ (0.75 - 0.97) × (physical length w/coils) 
 
 

 ●  Equivalent Thin Lens Focal Length 
 

f = 1 /[κ L ] = [Bρ]/[B 'L ] 
f (m) = [p(GeV)]/[0.299792 L(m) B '(T/m)] 
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 3.  Equations of Motion: Drifts, Quads, Bends …(co nt'd) 
 

 

Equations of Motion - ElectroStatic Quadrupole  
 

 
Key Parameters 
     R 
    For Optics:  +Vo 
Pole Voltage, Vo  -Vo 
    

Bore Radius, a    
 

Effective Length, L  
 
 

 For Engineering: -Vo 
 

Electrode Radius, R  +Vo 
 

Power, Vacuum Considerations 
   2a 
 
 
 

●  Lorentz Force Gives Fx and Fy:  F = (q) [E + v × B] = (q) E 
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3.  Equations of Motion: Drifts, Quads, Bends …(con t'd) 
 

Equations of Motion - ElectroStatic Quadrupole   (con't)  
 

 

● Electric Field: E = - (2Vo/a
2) [(r cosθ) x - (r sinθ) y] = (-2Vo/a

2) [(x) x - (y) y], or  
 

       Ex = (-2Vo/a
2) x = - G x       Ey = -(-2Vo/a

2) y = + G y  
 

● Force Components:    Fx = q(e) Ex   and     Fy = q(e) Ey ,   or  
 

                     Fx = - (2qVo/a
2) x              Fy = (2qVo/a

2) y 
 

● Equations of Motion       
  dx /ds = x'           dx'/ds = - [(2qVo/a

2)/ps] (γs/γ)/(cβs) x = - [qG/ps] (γs/γ)/(cβs) x 
 

  dy /ds = y'           dy'/ds = + [(2qVo/a
2)/ps] (γs/γ)/(cβs) y = + [qG/ps] (γs/γ)/(cβs) y 

 

  dl /ds = (βz/βs)-1      dδ /ds = 0      (longitudinal same as a drift) 
 

● Expand non-linear terms (γs/γ) ≅ 1 - βs
2δo + ...  (here is a difference from magnetic) 

 

  dx /ds = x'        dx'/ds = - [qG/(pscβs)] x = - [K1] x K1 is Quad Coefficient: 
 

  dy /ds = y'        dy'/ds = + [qG/ps] y = + [K1] x K1 = [qG/(pscβs)] = (q/ps) [2Vo/(a
2cβs)] 

 

  dl /ds = δo/γs2          dδ /ds = 0      (longitudinal same as a drift) 
 
 

⇒   1st Order Equations of Motion Same as Magnetic Quad with K1 = (q/ps) [2Vo/(a
2vs)]

 

⇒   Differences Between Electrostatic & Magnetic Quads Occur in Higher Orders  
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3.  Equations of Motion: Drifts, Quads, Bends …(con t'd) 
 
 

Some ElectroStatic Quadrupole (ESQ) Formulas 
 

 

 ●  ElectroStatic (ES) Quadrupole Strength 
 

K1(p) = 2qV0/(a
2βp)  &  β = β(ps,δ) 

 
 

 ●  ES Quadrupole Gradient 
 

G = Eo /a = 2qV0/a
2 

G (Volts/m2) = 2 [q(e)] [V0(Volts)]/[a(m)]2  
 
 

 ●  ES Quadrupole Strength 
 

κ ≡ K1 = (q/ps) [2Vo/(a
2cβs)] 

 ●  Effective Length 
 

    L = [G(0)]-1 ∫ G(z) dz  ~  electrode physical length  
 
 

 ●  Equivalent Thin Lens Focal Length 
 

f = 1 /[κ L ] = [psa
2cβs]/[2qVoL] 

 

 ●  Equivalent Magnetic Quadrupole Gradient 
 

B ' = 2qV0/(a
2cβs) 
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3.  Equations of Motion: Drifts, Quads, Bends …(con t'd) 
 
 

What about higher order optics? 
 

● Second-order (chromatic aberrations) are (relativel y) straightforward 
 

● Replace the Reference Momentum with the Actual Mome ntum 
(e.g. in the Quadrupole Coefficient K1) and expand in δ 

K1(p) = [qB'/p] = (ps/p) [qB'/ps] ] ≡ (ps/p) K1(ps)   
p  ≡ (1+ δ) ps 

so:   (ps/p)  ≈  1 - δ + O(δ2) 
 

● Solution to second-order equations of motion found using the 
Green's function approach for solving differential equations (PBO Lab).  

 

● Third-order requires considerably more work 
 

 - Intrinsic third-order is independent of fringe-f ields 
 

 - Fringe-field third-order require at least four i ntegrals (Matsuda & Wollnik) 
 
 

● TRACE 3-D incorporates fringe-fields by stepping th rough (integrating) 
 

 - Added fringe-field third-order terms to TRANSPOR T, TURTLE 
 

 - Added Electrostatic Quadrupole to TRANSPORT, TUR TLE: 
  First-, Second- and Third-order:  K1(p) = 2qV0/(a

2βp)  &  β = β(ps,δ) 
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R    = xx 

 cos(hs)   sin(hs)/h 

-hsin(hs)   cos(hs) 

R    = zz 

1  s/ γ 

0    1 

s 
2 

yy 
R    = 

1    s 

0    1 

 0       [1-cos(hs)]/h 
xz 

R    = 
 0           sin(hs) 

-sin(hs)   -[1-cos(hs)]/h 
zx 

R    = 
 0                    0 

 

 3.  Equations of Motion: Drifts, Quads, Bends …(co nt'd) 
 
 

 

Equations of Motion - Magnetic Bend  
 
 
 
 

● Reference Trajectory follows an arc → curvilinear coordinates used  

 
 

● For idealized Sector Dipole, 5 of the 9 submatrices  are non-zero:  

 
 
 
 
 
 
 
where h = 1/ρ and ρ is the bend radius  
 
 

● Dispersion & compaction are introduced by the Rxz and Rzx submatrices  

 
 

● Non-Idealized Sector Dipoles are More Common  
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 3.  Equations of Motion: Drifts, Quads, Bends …(co nt'd)  
 

 
 

Equations of Motion - Magnetic Bend   (con't)  
 
● Non-Idealized Sector Dipole Effects that Impact Fir st-Order Optics:  

 

   -  Fringe Fields  
 

   -  Pole Face Rotations 
 

   -  Pole Shoe Rotations 
 

• First Order Fringe Field Effects and Pole Face Rota tions are  
 Often Referred to a "Edge Focusing" 
 

   -  Can be Modeled with Thin Lens at Entrance/Exi t 
 

• Pole Shoe Rotations Result in Non-Uniform B Field  
 

   -  First Order Effect is Radial Derivative of B Field 
 

   -  Often Referred to as a Gradient Bend 
 

   -  Can be Modeled with a Quadrupole Field added to Dipole 
 

• Other Deviations Can also Useful   
 

 -  Curved Pole Faces, Higher-Order Combined Functi on Bends, ...  
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 3.  Equations of Motion: Drifts, Quads, Bends …(co nt'd)  
 

R-Matrix Example - Mass Separator Bend  
 

● 10 keV Phosphorous ( β = 0.000833 and  γ = 1.000000 ) 
 

● 90° Gradient Bend L of 0.785398 m, Field Index n of 1/2, Pole Tip Field Bo 

of 0.160 T, bend radius ρ of 50 cm 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 


